Abstract

AbstractThe main aim of the paper is to develop a distributed algorithm for optimal node activation in a sensor network whose measurements are used for parameter estimation of the underlying distributed parameter system. Given a fixed partition of the observation horizon into a finite number of consecutive intervals, the problem under consideration is to optimize the percentage of the total number of observations spent at given sensor nodes in such a way as to maximize the accuracy of system parameter estimates. To achieve this, the determinant of the Fisher information matrix related to the covariance matrix of the parameter estimates is used as the qualitative design criterion (the so-called D-optimality). The proposed approach converts the measurement scheduling problem to a convex optimization one, in which the sensor locations are given a priori and the aim is to determine the associated weights, which quantify the contributions of individual gaged sites to the total measurement plan. Then, adopting a pairwise communication scheme, a fully distributed procedure for calculating the percentage of observations spent at given sensor locations is developed, which is a major novelty here. Another significant contribution of this work consists in derivation of necessary and sufficient conditions for the optimality of solutions. As a result, a simple and effective computational scheme is obtained which can be implemented without resorting to sophisticated numerical software. The delineated approach is illustrated by simulation examples of a sensor network design for a two-dimensional convective diffusion process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.