Abstract

Wireless powered communication network (WPCN) is a novel networking paradigm that uses radio frequency (RF) wireless energy transfer (WET) technology to power the information transmissions of wireless devices (WDs). When energy and information are transferred in the same frequency band, a major design issue is transmission scheduling to avoid interference and achieve high communication performance. Commonly used centralized scheduling methods in WPCN may result in high control signaling overhead and thus are not suitable for wireless networks constituting a large number of WDs with random locations and dynamic operations. To tackle this issue, we propose in this paper a distributed scheduling protocol for energy and information transmissions in WPCN. Specifically, we allow a WD that is about to deplete its battery to broadcast an energy request buzz (ERB), which triggers WET from its associated hybrid access point (HAP) to recharge the battery. If no ERB is sent, the WDs contend to transmit data to the HAP using the conventional $p$-persistent CSMA (carrier sensing multiple access). In particular, we propose an energy queueing model based on an energy decoupling property to derive the throughput performance. Our analysis is verified through simulations under practical network parameters, which demonstrate good throughput performance of the distributed scheduling protocol and reveal some interesting design insights that are different from conventional contention-based communication network assuming the WDs are powered with unlimited energy supplies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.