Abstract

Distributed X-ray pulsar-based navigation (DXNAV) is an effective method to realize earth-orbit satellite positioning under weak pulsar signal conditions. In this paper, we propose a new DXNAV method based on multiple information fusion. The DXNAV system principle and the pulse phase estimate Cramér-Rao lower bound are deduced. To suppress the calculation complexity and the error source, the X-ray pulsar photon time-of-arrival detected by each satellite is equivalently converted to the leading satellite directly using the inter-satellite link ranging and starlight angular distance measurement. A high precision estimate model of the pulse phase is built using pulsar standard profile, observed profile, and star-geocentric angular distance from distributed satellites. The estimated pulse phase is real-time supplied to the navigation system, which is established in the form of a deviation equation. The two-stage Kalman filter is designed to estimate the pulse phase in profile histogram bin step and the leader position in real-time step. Compared separately with the maximum likelihood phase estimate method and the celestial navigation method using only the star-geocentric angular distance, the simulation analysis shows that the estimation precisions of position and velocity are improved by 29% and 25%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call