Abstract

Conventional cloud radio access networks (CRANs) assume single cloud processing and treat inter-cloud interference as background noise. This paper considers the downlink of a multi-CRAN where each cloud is connected to several base-stations (BSs) through limited-capacity wireline backhaul links. The set of BSs connected to each cloud, called cluster, serves a set of pre-known mobile users. The performance of the system becomes therefore a function of both inter-cloud and intra-cloud interference, as well as the compression schemes of the limited capacity backhaul links. This paper assumes independent compression scheme and imperfect channel state information (CSI) where the CSI errors belong to an ellipsoidal bounded region. The problem of interest becomes one of minimizing the network total transmit power subject to BS power and quality of service constraints, as well as backhaul capacity and CSI error constraints. This paper suggests solving the problem using the alternating direction method of multipliers (ADMMs). One highlight of this paper is that the proposed ADMM-based algorithm can be implemented in a distributed fashion across the multi-cloud network by allowing a limited amount of information exchange between the coupled clouds. Simulation results show that the proposed distributed algorithm provides a similar performance to the centralized algorithm in a reasonable number of iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.