Abstract

This paper studies the event-triggered consensus control problem for high-order uncertain nonlinear multi-agent systems with actuator saturation. By using a smooth Lipschitz function to approximate the saturation nonlinearity, an augment system and the Nussbaum function are adopted to deal with the residual terms of saturation nonlinearity based on adaptive backstepping method. Since excessive energy and communication resources will be consumed during the procedure to handle actuator saturation, two event-triggered mechanisms are proposed to save the communication resources and reduce the controllers’ update frequency. Whenever the triggered conditions are satisfied, the control signals transmitted to the actuators are updated and broadcasted to the neighboring area. A ’disturbance-like’ term is integrated so that the event-triggered control problem with actuator saturation can be transformed into a robust problem while the unknown disturbances are tackled by adaptive update laws. Moreover, the requirement for global communication topology known by all the agents is relaxed by introducing new estimators. All the signals in the closed-loop system are uniformly bounded and the consensus tracking errors are exponentially converged to a bounded set. Meanwhile, the Zeno behavior is excluded. Simulation results are employed to validate the advantages of our proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.