Abstract

In this paper we present an information-theoretic approach to distributively control multiple robots equipped with sensors to infer the state of an environment. The robots iteratively estimate the environment state using a sequential Bayesian filter, while continuously moving along the gradient of mutual information to maximize the informativeness of the observations provided by their sensors. The gradient-based controller is proven to be convergent between observations and, in its most general form, locally optimal. However, the computational complexity of the general form is shown to be intractable, and thus non-parametric methods are incorporated to allow the controller to scale with respect to the number of robots. For decentralized operation, both the sequential Bayesian filter and the gradient-based controller use a novel consensus-based algorithm to approximate the robots’ joint measurement probabilities, even when the network diameter, the maximum in/out degree, and the number of robots are unknown. The approach is validated in two separate hardware experiments each using five quadrotor flying robots, and scalability is emphasized in simulations using 100 robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.