Abstract

This paper addresses the distributed resilient filtering problem for a class of power systems subject to denial-of-service (DoS) attacks. A novel distributed filter is first constructed to practically reflect the impact from both cyber-attacks and gain perturbations. For all possible occurrence of DoS attacks and gain perturbations, an upper bound of filtering error covariance is derived by resorting to some typical matrix inequalities. Furthermore, the desired filter gain relying on the solution of two Riccati-like difference equations is obtained with the help of the gradient-based approach and the mathematical induction. The developed algorithm with a recursive form is independent of the global information and thus satisfies the requirements of scalability and distributed implementation online. Finally, a benchmark simulation test is exploited to check the usefulness of the designed filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.