Abstract

The use of machine learning is becoming increasingly common in computational materials science. To build effective models of the chemistry of materials, useful machine-based representations of atoms and their compounds are required. We derive distributed representations of compounds from their chemical formulas only, via pooling operations of distributed representations of atoms. These compound representations are evaluated on ten different tasks, such as the prediction of formation energy and band gap, and are found to be competitive with existing benchmarks that make use of structure, and even superior in cases where only composition is available. Finally, we introduce an approach for learning distributed representations of atoms, named SkipAtom, which makes use of the growing information in materials structure databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.