Abstract
This paper focuses on building up distributed representation of words in cause and effect spaces, a task-specific word embedding technique for causality. The causal embedding model is trained on a large set of cause-effect phrase pairs extracted from raw text corpus via a set of high-precision causal patterns. Three strategies are proposed to transfer the positive or negative labels from the level of phrase pairs to the level of word pairs, leading to three causal embedding models (Pairwise-Matching, Max-Matching, and AttentiveMatching) correspondingly. Experimental results have shown that Max-Matching and Attentive-Matching models significantly outperform several state-of-the-art competitors by a large margin on both English and Chinese corpora.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.