Abstract
Information about translations and rotations of the body is critical for complex self-motion perception during spatial navigation. However, little is known about the nature and function of their convergence in the cortex. We measured neural activity in multiple areas in the macaque parietal cortex in response to three different types of body motion applied through a motion platform: translation, rotation, and combined stimuli, i.e., curvilinear motion. We found a continuous representation of motion types in each area. In contrast to single-modality cells preferring either translation-only or rotation-only stimuli, convergent cells tend to be optimally tuned to curvilinear motion. A weighted summation model captured the data well, suggesting that translation and rotation signals are integrated subadditively in the cortex. Interestingly, variation in the activity of convergent cells parallels behavioral outputs reported in human psychophysical experiments. We conclude that representation of curvilinear self-motion perception is widely distributed in the primate sensory cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.