Abstract

Multiparty videoconferences, or more generally multiparty video calls, are gaining a lot of popularity as they offer a rich communication experience. These applications have, however, large requirements in terms of both network and computational resources and have to deal with sets of heterogenous clients. The multiparty videoconferencing systems are usually either based on expensive central nodes, called Multipoint Control Units (MCU), with transcoding capabilities, or on a peer-to-peer architecture where users cooperate to distribute more efficiently the different video streams. Whereas the first class of systems requires an expensive central hardware, the second one depends completely on the redistribution capacity of the users, which sometimes might neither provide sufficient bandwidth nor be reliable enough. In this work, we propose an alternative solution where we use a central node to distribute the video streams, but at the same time we maintain the hardware complexity and the computational requirements of this node as low as possible, for example, it has no video decoding capabilities. We formulate the rate allocation problem as an optimization problem that aims at maximizing the Quality of Service (QoS) of the videoconference. We propose two different distributed algorithms for solving the optimization problem: the first algorithm is able to find an approximate solution of the problem in a one-shot execution, whereas the second algorithm, based on Lagrangian relaxation, performs iterative updates of the optimization variables in order to gradually increase the value of the objective function. The two algorithms, though being disjointed, nicely complement each other. If executed in sequence, they allow us to achieve both a quick approximate rate reallocation, in case of a sudden change of the system conditions, and a precise refinement of the variables, which avoids problems caused by possible faulty approximate solutions. We have further implemented our solution in a network simulator where we show that our rate allocation algorithm is able to properly optimize users’ QoS. We also illustrate the benefits of our solution in terms of network usage and overall utility when compared to a baseline heuristic method operating on the same system architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.