Abstract

We address the problem of angle-of-arrival (AOA) target tracking using multiple unmanned aerial vehicles (UAVs) in three-dimensional (3D) space. A distributed 3D AOA target tracking method is proposed consisting of a distributed estimator and path optimization algorithm for multiple UAVs. First a novel 3D distributed pseudolinear Kalman filter (DPLKF) is developed to improve the stability of an extended Kalman filter solution. The DPLKF consists of two coupled filters; viz., an xy-DPLKF and a z-DPLKF. The bias problem of the 3D DPLKF is analyzed and a bias reduction method is proposed. A distributed path optimization algorithm is developed subject to communication range constraints and no-fly zones. This algorithm computes UAV waypoints using gradient-descent optimization on the xy-plane and grid search along the z-axis. To improve the tracking performance, the trace of the error covariance matrix is minimized. The properties and effectiveness of the proposed strategy are discussed and validated with simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.