Abstract
The widespread deployment of Automatic Metering Infrastructures in Smart Grid scenarios rises great concerns about privacy preservation of user-related data, from which detailed information about customer's habits and behaviors can be deduced. Therefore, the users' individual measurements should be aggregated before being provided to External Entities such as utilities, grid managers and third parties. This paper proposes a security architecture for distributed aggregation of additive data, in particular energy consumption metering data, relying on Gateways placed at the customers' premises, which collect the data generated by local Meters and provide communication and cryptographic capabilities. The Gateways communicate with one another and with the External Entities by means of a public data network. We propose a secure communication protocol aimed at preventing Gateways and External Entities from inferring information about individual data, in which privacy-preserving aggregation is performed by means of a cryptographic homomorphic scheme. The routing of information flows can be centralized or it can be performed in a distributed fashion using a protocol inspired by Chord. We compare the performance of both approaches to the optimal solution minimizing the data aggregation delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.