Abstract
A tactical radio network is a radio network in which a transmitter broadcasts the same information to its receivers. In this paper, dynamic spectrum management is studied for multiple cognitive tactical radio networks coexisting in the same area. First, we consider the problem of common rate maximization subject to a total power constraint for a single tactical radio network having multiple receivers and using parallel subchannels (parallel multicast channels). Mathematical derivations show that the optimal power allocation can be found in closed form under multiple hypothesis testing. An outer loop can be used tominimize the power subject to a common rate constraint. Then, we extend the iterative water-filling algorithm to the coexistence of multiple cognitive tactical radio networks without requiring any cooperation between the different networks. The power allocation is performed autonomously at the transmit side assuming knowledge of the noise variances and channel variations of the network. Simulation results show that the proposed algorithm is very robust in satisfying these constraints while minimizing the overall power in various scenarios.
Highlights
Tactical radio networks are networks in which information is conveyed from one transmitter to multiple receivers
In the second part of the paper (Section 3), capitalizing on the previous results, we introduce an autonomous dynamic spectrum management algorithm based on iterative waterfilling [19] for multiple cognitive tactical radio networks coexisting in a given area and willing to broadcast a common information to their group
This paper focuses on multiple cognitive radio networks for tactical communications, the proposed algorithm can be applied to any application requiring spectrum management between multiple cognitive radio networks for parallel multicast channels with only common information
Summary
Tactical radio networks are networks in which information (voice and packet based data) is conveyed from one transmitter to multiple receivers. When several coalition nations coexist in the same area, current technologies do not permit reconfigurability, interoperability, nor coexistence of the radio terminals. Software defined radio has been developed for reconfigurability of the terminals with software upgrades and for portability of the waveforms. Cognitive radio has been introduced by Mitola in 1999 as an extension to software-defined radio [1]. Cognitive radio has been developed for spectrum availability recognition, reconfigurability, interoperability, and coexistence between terminals by means of software defined radio technology, intelligence, awareness, and learning [1, 2]. Applications of cognitive radio include, but are not limited to, tactical radio networks, emergency networks, and wireless local area networks with high throughput and range
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EURASIP Journal on Wireless Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.