Abstract
For multi-agent system (MAS), most of existing iterative learning control (ILC) algorithms consider about the tracking of reference defined over the whole trial interval, while the point-to-point (P2P) task, where the emphasis is placed on the tracking of intermediate time points, has not been explored. Thus, a distributed ILC method is proposed, in which each agent updates the feedforward control input by learning from the experience of itself and its neighbors in previous repeated tasks to achieve the goal of improving performance. In addition, for the sake of reducing the burden of data transmission in MAS, effective data quantization is essential. In this case, the quantitative measurement of the error of the tracking time points is further used in the ILC updating law. In order to accommodate this requirement, a distributed point-to-point iterative learning control (P2PILC) with tracking error quantization for MAS is first proposed in this paper. A necessary and sufficient condition is presented for the asymptotical stability of the proposed algorithm, and simulation results show the effectiveness of it finally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.