Abstract

Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities. This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks. A proportional-integral-observer (PIO) with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles. Then, a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks. In light of such a scheme and the common properties of Laplace matrices, the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one. Furthermore, some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory. The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies. Finally, a simulation example is provided to illustrate the effectiveness of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call