Abstract
The article considers a parametric effect which takes place when the velocity of signal propagation in a long line changes. We found the analytical solution describing the form of the transformed signal for a line with losses, when line parameters change symmetrically. We also considered lines without losses, with asymmetrical change of parameters. Our theoretical results comply with experimental data. In certain conditions, such a line can be used as an amplifier. The parametric effect in optics is described by Maxwell's equations, while in case of a long line, the analysis is based on telegrapher's equations. However, it turns out that in the end, both in optics and electronics, the parametric effect is described by wave equations that are mathematically similar. This is because fundamentally, when the parameters of the propagating medium change, the parametric effect is physically based on energy interchange between the controlling (pump) signal and the transformed one. So, the obtained results can be used for analysis of parametric effects in optics and electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.