Abstract

In this work, we address the distributed optimization problem with event-triggered communication by the notion of input feedforward passivity (IFP). First, we analyze the distributed continuous-time algorithm over uniformly jointly strongly connected balanced digraphs in an IFP-based framework. Then, we propose a distributed event-triggered communication mechanism for this algorithm. Next, we discretize the continuous-time algorithm by the forward Euler method with a constant stepsize irrelevant to network size, and show that the discretization can be seen as a stepsize-dependent passivity degradation of the input feedforward passivity. Thus, the discretized system preserves the IFP property and enables the same event-triggered communication mechanism but without Zeno behavior due to the discrete-time nature. Finally, a numerical example is presented to illustrate our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.