Abstract

This article presents a distributed optimization algorithm tailored to solve optimization problems arising in smart grids. In detail, we propose a variant of the augmented Lagrangian-based alternating direction inexact Newton (ALADIN) method, which comes along with global convergence guarantees for the considered class of linear-quadratic optimization problems. We establish local quadratic convergence of the proposed scheme and elaborate its advantages compared with the alternating direction method of multipliers (ADMM). In particular, we show that, at the cost of more communication, ALADIN requires fewer iterations to achieve the desired accuracy. Furthermore, it is numerically demonstrated that the number of iterations is independent of the number of subsystems. The effectiveness of the proposed scheme is illustrated by running both an ALADIN and an ADMM-based model predictive controller on a benchmark case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.