Abstract

This study addres,ses a distributed optimal integrated tracking control method with disturbance rejection for separate kinematic and dynamic uncertain non-holonomic mobile mechanical multi-agent ( N M 3 ) systems. Initially, based on the graph theory, the overall tracking systems of agents are defined and the distributed optimal tracking problem of separate kinematics and dynamics is transformed into an equivalent distributed optimal regulation problem of the integrated affine system. Then, neural network (NN)-based adaptive dynamic programming and cooperative differential game theory is utilised for control, in which only one NN is required for each agent. The NN weight-tuning law and the online algorithm is developed to approximate the value function, and synchronously update both optimal control and worst disturbance laws in only one iterative loop. The tracking errors and function approximation errors are proven to be uniformly ultimately bounded using Lyapunov theory. Finally, as applications of the proposed method, control of the wheeled mobile multi-robot system is discussed. The effectiveness of the method is demonstrated by the results of the comparative numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.