Abstract
State-of-charge (SoC) imbalance and bus voltage deviation are two of the main problems in autonomous dc microgrids. Based on this concern, this paper presents an improved dual-quadrant SoC weighted control strategy and a distributed optimization control method to achieve SoC balance, ensuring accurate power-sharing and bus voltage recovery. Firstly, this paper couples the injected/released power with the current SoC and observed average SoC value to weight the droop coefficient, which is based on the charge/discharge mode for the energy storage system. Then a secondary controller is designed based on distributed optimal control to eliminate the bus voltage deviation caused by the line impedance difference. The proposed optimal control method optimizes the average bus voltage to the nominal value and achieve accurate power-sharing by constructing the correlated variables and voltage independent intermediate variables exchanged among bulk energy storage units (ESUs). Since the voltage observer cannot accurately observe the true average bus voltage under the communication delay, the proposed distributed optimal control method without the voltage observer can ensure that the average bus voltage is optimized to the nominal value, thus improving the robustness of the control system. Finally, the correctness and effectiveness of the proposed method are verified in Simulink/MATLAB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.