Abstract

In this article, we consider the distributed optimal consensus problem under nominal and nonfragile cases for a class of minimum-phase uncertain nonlinear systems with unity-relative degree and disturbances generated by an external autonomous system. The involved cost function is the sum of all local cost functions associated with each individual agent. Two different edge-based distributed adaptive algorithms utilizing the internal model principle are designed to solve the problem in a fully distributed manner. Graph theory, nonsmooth analysis, convex analysis, and the Lyapunov theory are employed to show that the proposed algorithms converge accurately to the optimal solution of the considered problem. Finally, an example involving the dynamics of a Lorenz-type system is provided to demonstrate the effectiveness of the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.