Abstract

Optical fiber sensors offer unprecedented features, the most unique of which is the ability of monitoring varia- tions of the observed physical field with spatial continuity along the fiber. These distributed optical fiber sensors are based on the scattering processes that originate from the interaction between light and matter. Among the three different scatter- ing processes that may take place in a fiber—namely Rayleigh, Raman and Brillouin scattering, this paper focuses on Rayleigh-based distributed optical fiber sensors. For a given optical frequency, Rayleigh-based sensors exploit the three main properties of light: intensity, phase and polarization. All these sensing mechanisms are reviewed, along with basic principles, main acquisition techniques and fields of application. Emphasis, however, will be put on polarization-based distributed optical fiber sensors. While they currently represent a niche, they offer promising unique features worth being considered in greater detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.