Abstract

In this paper, we propose a distributed online voltage control algorithm for distribution networks with multiple photovoltaic (PV) systems based on dual-ascent method. Conventional distributed algorithms implement voltage control only when the algorithms converge. However, our proposed algorithm is able to carry out voltage control immediately. In particular, we derive a closed-form solution for PV controllers to locally update the active and reactive power set points aiming at minimizing the total loss and maintaining bus voltages within the acceptable ranges. The optimality is guaranteed and the convergence is established analytically. Moreover, our proposed algorithm only requires the information exchange between neighboring PV systems, thus reducing communication complexity. Finally, numerical tests on IEEE 37-bus distribution system verify the effectiveness and robustness of our proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.