Abstract

When numerical and machine learning (ML) computations are expressed relationally, classical query execution strategies (hash-based joins and aggregations) can do a poor job distributing the computation. In this paper, we propose a two-phase execution strategy for numerical computations that are expressed relationally, as aggregated join trees (that is, expressed as a series of relational joins followed by an aggregation). In a pilot run, lineage information is collected; this lineage is used to optimally plan the computation at the level of individual records. Then, the computation is actually executed. We show experimentally that a relational system making use of this two-phase strategy can be an excellent platform for distributed ML computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call