Abstract

This paper is aimed to the investigation on innovative distributed negative group delay (DNGD) circuits for RF communication. Thanks to the analogy between the lumped and distributed circuits, NGD circuit topologies were identified. By using the S-parameter theory, analysis and synthesis methods of these topologies are proposed. The DNGD circuits developed are mainly comprised of a transistor combined with a series resistance ended by a stub. Then, synthesis relations enabling to determine the NGD circuit parameters from the desired NGD and gain values are established. As application, an active phase shifter (PS) operating independently with the frequency based on the cascade of PGD and NGD devices was synthesized. First, an NGD PS with transmission phase of (135±5)° around 2.56GHz over the bandwidth of about 1.02GHz was obtained. Then, a two-stage DNGD PS exhibiting 90° with ±10° flatness from 4.1GHz to 6.8GHz was designed. The DNGD circuit presented can be used in various telecommunication areas notably for correcting RF/numerical signal delays in the RF-microwave analogue-digital devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.