Abstract
One of the main advantages of second-order methods in a centralized setting is that they are insensitive to the condition number of the objective function's Hessian. For applications such as regression analysis, this means that less pre-processing of the data is required for the algorithm to work well, as the ill-conditioning caused by highly correlated variables will not be as problematic. Similar condition number independence has not yet been established for distributed methods. In this paper, we analyze the performance of a simple distributed second-order algorithm on quadratic problems and show that its convergence depends only logarithmically on the condition number. Our empirical results indicate that the use of second-order information can yield large efficiency improvements over first-order methods, both in terms of iterations and communications, when the condition number is of the same order of magnitude as the problem dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.