Abstract

An integrative power flow approach is established for networked microgrids. Our new contributions include: 1) A distributed augmented power flow (APF) algorithm for networked microgrids is devised to incorporate hierarchical control effects in/among microgrids; 2) Based upon APF, an enhanced distributed continuation power flow (CPF <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^+$</tex-math></inline-formula> ) algorithm is established to explore operating regions of droop coefficients and power interchanges for static voltage stability assessment; and 3) A programmable distributed platform is designed to coordinate power interchanges and support plug-and-play while protecting local customers’ privacy. RTDS experiments validate the high fidelity of APF, while its scalability and convergence performance are verified on medium and large networked microgrids. Extensive tests demonstrate the effectiveness of CPF <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^+$</tex-math></inline-formula> in quantifying secure operation regions of networked microgrids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call