Abstract

This article considers a distributed Nash equilibrium seeking problem, where the players only have partial access to other players' actions, such as their neighbors' actions. Thus, the players are supposed to communicate with each other to estimate other players' actions. To solve the problem, a leader-following consensus gradient-free distributed Nash equilibrium seeking algorithm is proposed. This algorithm utilizes only the measurements of the player' local cost function without the knowledge of its explicit expression or the requirement on its smoothness. Hence, the algorithm is gradient-free during the entire updating process. Moreover, the analysis on the convergence of the Nash equilibrium is studied for the algorithm with both diminishing and constant step-sizes, respectively. Specifically, in the case of diminishing step-size, it is shown that the players' actions converge to the Nash equilibrium almost surely, while in the case of fixed step-size, the convergence to the neighborhood of the Nash equilibrium is achieved. The performance of the proposed algorithm is verified through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.