Abstract
This article considers the distributed Nash equilibrium seeking problem of a multicluster aggregative game subject to local set constraints, consensus constraints in the same cluster, and coupled linear equality and nonlinear inequality constraints among all clusters. In the considered game, each cluster is composed of a group of players formulated by uncertain Euler-Lagrange (EL) dynamics, and its objective is to minimize its own cost function, which is the sum of the local functions of all players in the cluster. The local cost function of each player depends on its own decision and an aggregate of the decisions of all the players. An adaptive continuous-time distributed strategy is developed for uncertain EL systems to reach the generalized Nash equilibrium (GNE) of multicluster aggregative game. In particular, a new auxiliary system is synthesized using a projection operator, gradient descent, and dynamic average consensus to estimate the GNE. Based on the outputs of the auxiliary system, an adaptive tracking algorithm is developed for an EL system with uncertain parameters. Using the Lyapunov stability theory, it is shown that the developed distributed strategy achieves accurate convergence to the GNE. Finally, a numerical example is presented to demonstrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.