Abstract

This paper is concerned with anti-disturbance Nash equilibrium seeking for games with partial information. First, reduced-order disturbance observer-based algorithms are proposed to achieve Nash equilibrium seeking for games with first-order and second-order players, respectively. In the developed algorithms, the observed disturbance values are included in control signals to eliminate the influence of disturbances, based on which a gradient-like optimization method is implemented for each player. Second, a signum function based distributed algorithm is proposed to attenuate disturbances for games with second-order integrator-type players. To be more specific, a signum function is involved in the proposed seeking strategy to dominate disturbances, based on which the feedback of the velocity-like states and the gradients of the functions associated with players achieves stabilization of system dynamics and optimization of players' objective functions. Through Lyapunov stability analysis, it is proven that the players' actions can approach a small region around the Nash equilibrium by utilizing disturbance observer-based strategies with appropriate control gains. Moreover, exponential (asymptotic) convergence can be achieved when the signum function based control strategy (with an adaptive control gain) is employed. The performance of the proposed algorithms is tested by utilizing an integrated simulation platform of virtual robot experimentation platform (V-REP) and MATLAB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.