Abstract

In this paper, we study a distributed continuous-time design for aggregative games with coupled constraints in order to seek the generalized Nash equilibrium by a group of agents via simple local information exchange. To solve the problem, we propose a distributed algorithm based on projected dynamics and non-smooth tracking dynamics, even for the case when the interaction topology of the multi-agent network is time-varying. Moreover, we prove the convergence of the non-smooth algorithm for the distributed game by taking advantage of its special structure and also combining the techniques of the variational inequality and Lyapunov function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.