Abstract
In multisensor systems, the signal processing delay, measurement acquisition delay, and other factors will lead to imprecisely time-stamped measurements, namely, the problem of time-offset. To deal with the measurement time offsets in distributed multisensor systems, a distributed multisensor multitarget tracking algorithm with time-offset registration is proposed. The local processors track multiple targets in the presence of false alarms and missed detections based on the joint probabilistic data association (JPDA) algorithm and the extended Kalman filter (EKF), providing the time-biased local tracks. In the global processor, in allusion to the global track accuracy degradation introduced by the time offsets of local tracks, the equivalent measurements are firstly constructed based on local tracks by using the inverse Kalman filter. The pseudo-measurement equation of time offset for constant velocity targets is derived and the pseudo-measurement calculation method is presented. Then, the pseudo-measurement based relative time-offset estimation algorithm is presented, by using the recursive least squares estimation (RLSE) and the Kalman filter (KF) to jointly estimate the state in space and time domains, respectively. Finally, a framework of distributed multisensor multitarget tracking with time-offset registration is presented, where the time-varying relative time-offset estimation and compensation, 'equivalent measurement to global track' association, and global track update are included. Simulations for multisensor multitarget tracking in the presence of false alarms and missed detections are conducted, demonstrating that the present algorithm effectively improves the accuracy of fused global tracks.
Highlights
量测时刻以及时间偏差的对应关系。 其中, tik 表示 传感器 i 的第 k 个时间戳,tik 表示其对应的准确量测
In multisensor systems, the signal processing delay, measurement acquisition delay, and other factors will lead to imprecisely time⁃stamped measurements, namely, the problem of time⁃offset
The local processors track multiple targets in the presence of false alarms and missed detections based on the joint probabilistic data association ( JPDA) algorithm and the extended Kalman filter ( EKF), providing the time⁃biased local tracks
Summary
量测时刻以及时间偏差的对应关系。 其中, tik 表示 传感器 i 的第 k 个时间戳,tik 表示其对应的准确量测 Zi,j( tik ) = h( Xj( tik ) ) + vi,j( tik ) = 得的 X^ i,j( tik ) 是目标 j 在 tik 时刻状态 Xj( tik ) 的估计 Ui,j( tik ) = Xj( tik ) + ui,j( tik )
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.