Abstract
This paper studies the problem of simultaneous localization and tracking (SLAT) in non-line-of-sight (NLOS) environments. By combining a target state and a sensor node location into an augmented vector, a nonlinear system with two jumping parameters is formulated in which two independent Markov chains are used to describe the switching of the target maneuvers and the transition of LOS/NLOS, respectively. To derive the state estimate of the proposed jump Markov nonlinear system for each sensor node, an interacting multiple-model (IMM) approach and a cubature Kalman filter (CKF) are employed. As the number of mode-conditioned filters exponentially grows with the increases in the number of active sensor nodes in the centralized fusion, a distributed scheme is adopted to reduce the computational burden, and a covariance intersection (CI) method is used to fuse sensor-based target-state estimates. A numerical example is provided, involving tracking a maneuvering target by a set of sensors, and simulation results show that the proposed filter can track the target and can estimate the positions of active sensor nodes accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.