Abstract
This article proposes an observer-based event-driven fault-tolerant (OBEDFT) secondary control strategy for AC microgrids (MGs) to achieve load voltage regulation. First, the input-output feedback linearization method transforms the voltage regulation issue into an output feedback tracking problem for linear multiagent systems (MASs) with nonlinear dynamics. This transformation provides the necessary preprocessing for load voltage regulation. Then, an OBEDFT secondary control protocol that considers full-state immeasurability is proposed. The actuators of distributed generators (DGs) may experience partial loss of effectiveness (PLOE) and bias faults, and these fault parameters may be heterogeneous and time-varying. The protocol introduces adaptive techniques to avoid information related to fault parameters while using event-driven mechanisms to achieve discrete measurements of neighboring DG. Additionally, the protocol uses boundary layers to construct smooth controllers that prevent the chattering effect caused by nonsmooth controllers. Finally, simulation results confirm the effectiveness of this load voltage regulation strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.