Abstract

Distributed algorithms have recently gained immense popularity. With regards to computer vision applications, distributed multi-target tracking in a camera network is a fundamental problem. The goal is for all cameras to have accurate state estimates for all targets. Distributed estimation algorithms work by exchanging information between sensors that are communication neighbors. Vision-based distributed multi-target state estimation has at least two characteristics that distinguishes it from other applications. First, cameras are directional sensors and often neighboring sensors may not be sensing the same targets, i.e., they are naive with respect to that target. Second, in the presence of clutter and multiple targets, each camera must solve a data association problem. This paper presents an information-weighted, consensus-based, distributed multi-target tracking algorithm referred to as the Multi-target Information Consensus (MTIC) algorithm that is designed to address both the naivety and the data association problems. It converges to the centralized minimum mean square error estimate. The proposed MTIC algorithm and its extensions to non-linear camera models, termed as the Extended MTIC (EMTIC), are robust to false measurements and limited resources like power, bandwidth and the real-time operational requirements. Simulation and experimental analysis are provided to support the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call