Abstract

In this paper, a distributed, autonomous, cooperative mission-planning (DACMP) approach was proposed to focus on the problem of the real-time cooperative searching and surveillance of multiple unmanned aerial vehicles (multi-UAVs) with threats in uncertain and highly dynamic environments. To deal with this problem, a time-varying probabilistic grid graph was designed to represent the perception of a target based on its a priori dynamics. A heuristic search strategy based on pyramidal maps was also proposed. Using map information at different scales makes it easier to integrate local and global information, thereby improving the search capability of UAVs, which has not been previously considered. Moreover, we proposed an adaptive distributed task assignment method for cooperative search and surveillance tasks by considering the UAV motion environment as a potential field and modeling the effects of uncertain maps and targets on candidate solutions through potential field values. The results highlight the advantages of search task execution efficiency. In addition, simulations of different scenarios show that the proposed approach can provide a feasible solution for multiple UAVs in different situations and is flexible and stable in time-sensitive environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.