Abstract
In this paper, multi-stream transmission in interference networks aided by multiple amplify-and-forward (AF) relays in the presence of direct links is considered. The objective is to minimize the sum power of transmitters and relays by beamforming optimization under the stream signal-to-interference-plus-noise-ratio (SINR) constraints. For transmit beamforming optimization, the problem is a well-known non-convex quadratically constrained quadratic program (QCQP) that is NP-hard to solve. After semi-definite relaxation (SDR), the problem can be optimally solved via alternating direction method of multipliers (ADMM) algorithm for distributed implementation. Analytical and extensive numerical analyses demonstrate that the proposed ADMM solution converges to the optimal centralized solution. The convergence rate, computational complexity, and message exchange load of the proposed algorithm outperforms the existing solutions. Furthermore, by SINR approximation at the relay side, distributed joint transmit and relay beamforming optimization is also proposed that further improves the total power saving at the cost of increased complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.