Abstract

The penetration of distributed generation in medium (MV) and low (LV) voltage distribution grids has been steadily increasing every year in multiple countries, thus creating new technical challenges in grid operation and motivating developments in distributed optimization for flexibility management. The traditional centralized optimal power flow (OPF) algorithm can solve technical constraints violation. However, computational efficiency, new technologies (e.g., edge computing) and control architectures (e.g., web-of-cells) are demanding for distributed approaches. This work formulates a novel distributed multi-period OPF for three-phase unbalanced grids that is essential when integrating energy storage units in operational planning (e.g., day-ahead) of LV or local energy community grids. The decentralized constrained optimization problem is solved with the alternating direction method of multipliers (ADMM) adapted for unbalanced LV grids and multi-period optimization problems. A 33-bus LV distribution grid is used as a case-study in order to define optimal battery storage scheduling along a finite time horizon that minimizes overall grid operational costs, while complying with technical constraints of the grid (e.g., voltage and current limits) and battery state-of-charge constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call