Abstract

AbstractOptimizing the operation of heating systems in buildings has become of high interest. The control objective of such systems is to minimize the heating energy bills while maintaining a certain indoor thermal comfort. Dealing with electric convectors, the heating price is proportional to the amount of heat delivered. Hence, using a linear model of the process in an MPC environment, the optimization problem can be stated in an LP form. In this paper we treat the case of multi-zone building temperature regulation, where the available electrical power is lower than the sum of the maximum powers of local heaters. This acts as a coupling constraint in our optimization problem. A distributed MPC (DMPC) algorithm based on Dantzig-Wolfe decomposition is proposed, considering also the thermal coupling between adjacent zones. Numerical results are presented in order to illustrate the effectiveness of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.