Abstract

In this paper, a distributed model reference adaptive control (MRAC) design framework is proposed for containment control of heterogeneous uncertain multi-agent systems (MAS). Both groups of leaders and followers are considered to have general linear dynamics with the leaders subject to bounded external inputs and the followers subject to uncertain system dynamics. Two distributed adaptive control protocols are developed under this framework. The first protocol assumes measurable leaders’ input signals for a subset of the followers, and employs distributed observers with state-feedback adaptive controllers to achieve exact containment control performance. The second protocol incorporates robust adaptive control with nonlinear compensator techniques to handle a more challenging scenario of unmeasurable bounded leaders’ inputs. Convergence of the containment control errors to an arbitrarily adjustable neighborhood of the origin is guaranteed with the second protocol. The proposed MRAC framework provides a promising alternative solution over the prevailing cooperative output regulation framework for heterogeneous linear MAS containment control. It enables us to handle more general system settings under more stringent control environments with limited accessibility of leaders’ information and uncertain follower dynamics. Effectiveness and usefulness of the proposed approaches are demonstrated through extensive simulation studies, including an application to containment control of multiple nonholonomic mobile robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.