Abstract

We consider multi-agent systems with heterogeneous, nonlinear agents subject to individual constraints that want to achieve a periodic, dynamic cooperative control goal which can be characterised by a set and a suitable cost. We propose a sequential distributed model predictive control (MPC) scheme in which agents sequentially solve an individual optimisation problem to track an artificial periodic output trajectory. The optimisation problems are coupled through these artificial periodic output trajectories, which are communicated and penalised using the cost that characterises the cooperative goal. The agents communicate only their artificial trajectories and only once per time step. We show that under suitable assumptions, the agents can incrementally move their artificial output trajectories towards the cooperative goal, and, hence, their closed-loop output trajectories asymptotically achieve it. We illustrate the scheme with a simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.