Abstract
In the article, we study the distributed model predictive control (DMPC) problem for a network of linear discrete-time systems, where the system dynamics are decoupled, the system constraints are coupled, and the communication networks are described by time-varying directed graphs. A novel distributed optimization algorithm called the push-sum dual gradient (PSDG) algorithm is proposed to solve the dual problem of the DMPC optimization problem in a fully distributed way. We prove that the sequences of the primal, and dual variables converge to their optimal values. Furthermore, to solve the implementation issues, stopping criteria are designed to allow early termination of the PSDG Algorithm, and the gossip-based push-sum algorithm is proposed to check the stopping criteria in a distributed manner. It is shown that the optimization problem is iteratively feasible, and the closed-loop system is exponentially stable. Finally, the effectiveness of the proposed DMPC approach is verified via an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.