Abstract

This letter addresses distributed optimization, where a network of agents wants to minimize a global strongly convex objective function. The global function can be written as a sum of local convex functions, each of which is associated with an agent. We propose a continuous-time distributed mirror descent algorithm that uses purely local information to converge to the global optimum. Unlike previous work on distributed mirror descent, we incorporate an integral feedback in the update, allowing the algorithm to converge with a constant step-size when discretized. We establish the asymptotic convergence of the algorithm using Lyapunov stability analysis. We further illustrate numerical experiments that verify the advantage of adopting integral feedback for improving the convergence rate of distributed mirror descent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.