Abstract

The Wigner Monte Carlo method, based on the generation and annihilation of particles, has emerged as a promising approach to treat transient problems of quantum electron transport in nanostructures. Tackling these simulations in multiple spatial dimensions demands a parallelized approach to facilitate a practical application of the method in order to investigate realistic problems, due to the otherwise exorbitant execution-times and memory requirements. Because of the annihilation step, a straight-forward parallelization of the Wigner Monte Carlo code is not possible, since sub-ensembles of particles can not be treated independently. Moreover, the large memory requirements of the annihilation procedure presents challenges when working in a distributed-memory setting. A solution to this problem is presented here with a parallelization approach using a spatial domain decomposition, implemented using the message passing interface. The presented benchmark results, based on standard one-dimensional examples, exhibit a good efficiency in the scalability of not only speed, but also memory consumption, which is paramount for the simulation of realistic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call