Abstract

If learning methods are to scale to the massive sizes of modern data sets, it is essential for the field of machine learning to embrace parallel and distributed computing. Inspired by the recent development of matrix factorization methods with rich theory but poor computational complexity and by the relative ease of mapping matrices onto distributed architectures, we introduce a scalable divide-and-conquer framework for noisy matrix factorization. We present a thorough theoretical analysis of this framework in which we characterize the statistical errors introduced by the divide step and control their magnitude in the conquer step, so that the overall algorithm enjoys high-probability estimation guarantees comparable to those of its base algorithm. We also present experiments in collaborative filtering and video background modeling that demonstrate the near-linear to superlinear speed-ups attainable with this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.