Abstract
A new model, called the distributed mass/discrete floe model, is proposed for performing practical computations of mesoscale pack ice rheology. This model possesses the advantages of both the continuum and the discrete element models: it can express the discrete nature of pack ice, for which it is difficult to use a continuum model, and requires a much shorter computation time than a discrete element model. The pack ice is divided into ice bunches in which the floes, assumed to be distributed uniformly, are modeled as inelastic disks or rectangles floating on the water. The ice interaction forces are formulated from the relationship between the impulse on the bunch and the variation of momentum in the bunch. The ocean flow is calculated simultaneously with the floe movement using a multilayer model. In a circulating water channel, drift tests of physical model floes were performed in order to investigate the characteristics of their motion and interaction with ocean structure models. Near the structure, the floe motion depends on the floe shape. Disk floes show a lateral motion in front of the structure. They flow out around both sides of the structure and the number of floes in front of the structure decreases with the lapse of time. On the other hand, rectangular floes scarcely flow laterally. The number of floes in front of the structure remains constant over time. These experiments indicate that when the motion of pack ice around a structure is simulated, it is important to consider the floe shape. The disk floe motion and the rectangular floe motion can be regarded as extreme cases of pack ice motion. Actual pack ice motion may be between these two extremes. Computations were carried out using the distributed mass/discrete floe (DMDF) model. Simulation results were compared with the circulating water channel experiment results and sea ice motion in the southern part of the Sea of Okhotsk. The DMDF model predicted the circulating water channel drift test results quite closely. The DMDF model results also compared quite well with the sea ice motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.