Abstract

Ideally, many application systems for distributed users should be designed without requiring a centralized controller, for example cloud computing or wireless sensor networks. A fundamental challenge to developing distributed algorithms for these systems is load balancing, which is the focus of study in this paper. A common feature of these distributed algorithms is that routing decisions should be derivable without requiring much information from the system, probabilistic routing is one example coming to mind. In this paper, we propose a new routing strategy based on the idea of shift-invariant protocol sequences. We study this load balancing approach in the context of a queuing model of multi-server system. Our model and strategy can be applied to many practical systems, including wireless networks. Numerical studies were carried out to compare our strategy with other routing strategies such as probabilistic routing and random sequences routing. The results show that the proposed algorithm has better performance than these strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.