Abstract

Adaptive algorithms based on in-network processing of distributed observations are well-motivated for online parameter estimation and tracking of (non)stationary signals using ad hoc wireless sensor networks (WSNs). To this end, a fully distributed least mean-square (D-LMS) algorithm is developed in this paper, offering simplicity and flexibility while solely requiring single-hop communications among sensors. The resultant estimator minimizes a pertinent squared-error cost by resorting to i) the alternating-direction method of multipliers so as to gain the desired degree of parallelization and ii) a stochastic approximation iteration to cope with the time-varying statistics of the process under consideration. Information is efficiently percolated across the WSN using a subset of ldquobridgerdquo sensors, which further tradeoff communication cost for robustness to sensor failures. For a linear data model and under mild assumptions aligned with those considered in the centralized LMS, stability of the novel D-LMS algorithm is established to guarantee that local sensor estimation error norms remain bounded most of the time. Interestingly, this weak stochastic stability result extends to the pragmatic setup where intersensor communications are corrupted by additive noise. In the absence of observation and communication noise, consensus is achieved almost surely as local estimates are shown exponentially convergent to the parameter of interest with probability one. Mean-square error performance of D-LMS is also assessed. Numerical simulations: i) illustrate that D-LMS outperforms existing alternatives that rely either on information diffusion among neighboring sensors, or, local sensor filtering; ii) highlight its tracking capabilities; and iii) corroborate the stability and performance analysis results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.