Abstract

There has been a gap regarding current knowledge of the effect of PM on pulmonary TB, such as the exposure-time-response between them. This study aimed to explore the distributed lag effects of particulate matter (PM) on active pulmonary tuberculosis (TB) and identify the vulnerable groups. A generalized additive mixed model combined with a distributed lag non-linear model was applied to quantify the association between PM and active pulmonary TB with adjustment for potential confounders. Relative risk (RR) and cumulative RR with 95% confidence interval (CI) were calculated to quantify the exposure-time-response. A total of 16,486 cases of active pulmonary TB were notified. Results suggested that a unit 10µg/m3 increase of daily PM2.5 concentration was positively associated with active pulmonary TB morbidity at 36-115 lag day and RR reached maximum at 66 lag day (1.0076; 95%CI, 1.0031-1.0122), and the cumulative RR was 2.1940 (95%CI, 1.2292-3.9161). For PM10, this association was significantly positive at 73-117 lag day, and RR reached maximum at 100 lag day (1.0036; 95%CI, 1.0003-1.0067), and the cumulative RR was not significant. This study provides evidence that PM significantly associate with active pulmonary TB. Vulnerability to PM2.5 was identified in male, female, 0-18 ages, 19-64 ages, workers, and students. Our findings have significant implications for developing local strategies to prevent and reduce health impact in PM polluted areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call